On-Chip Transformers and Monolithic Transformer Realizations
On-Chip Transformers
Transformers are important elements in RF circuits for impedance conversion, impedance matching, and bandwidth enhancement. Here, we present an analytical model for monolithic transformers that is suitable for circuit simulation and design optimization. We also provide simple expressions for calculating the mutual coupling coefficient (k).
We first discuss different on-chip transformers and their advantages and disadvantages. We then present an analytical model along with expressions for the elements in it and the mutual coupling coefficient.
Monolithic Transformer Realizations
Figures 11.18 through 11.23 illustrate common configurations of monolithic transformers. The different realizations offer varying tradeoffs among the self-inductance and series resistance of each port, the mutual coupling coefficient, the port-to-port and port-to-substrate capacitances, resonant frequencies, symmetry, and area. The models and coupling expressions allow these trade-offs to be systematically explored, thereby permitting transformers to be customized for a variety of circuit design requirements.
The characteristics desired of a transformer are application dependent. Transformers can be configured as three or four-terminal devices. They may be used for narrowband or broadband applications. For example, in single-sided to differential conversion, the transformer might be used as a four-terminal narrowband device. In this case, a high mutual coupling coefficient and high self-inductance are desired, along with low series resistance. On the other hand, for bandwidth extension applications, the transformer is used as a broadband three-terminal device. In this case, a small mutual coupling coefficient and high series resistance are acceptable, while all capacitances need to be minimized [22].
The tapped transformer (Figure 11.18) is best suited for three-port applications. It permits a variety of tapping ratios to be realized. This transformer relies only on lateral magnetic coupling. All windings can be implemented with the top metal layer, thereby minimizing port-to-substrate capacitances. Since the two inductors occupy separate regions, the self-inductance is maximized while the port-to-port capacitance is minimized. Unfortunately, this spatial separation also leads to low mutual coupling (k = 0.3–0.5).
The interleaved transformer (Figure 11.19) is best suited for four-port applications that demand symmetry. Once again, capacitances can be minimized by implementing the spirals with top level metal so that high resonant frequencies may be realized. The interleaving of the two inductances permit moderate coupling (k = 0.7) to be achieved at the cost of reduced self-inductance. This coupling may be increased at the cost of higher series resistance by reducing the turn width (w) and spacing (s).
The stacked transformer (Figure 11.20) uses multiple metal layers and exploits both vertical and lateral magnetic coupling to provide the best area efficiency, the highest self-inductance, and highest
coupling (k = 0.9). This configuration is suitable for both three- and four-terminal configurations. The main drawback is the high port-to-port capacitance, or equivalently a low self-resonant frequency. In some cases, such as narrowband impedance transformers, this capacitance may be incorporated as part of the resonant circuit. Also, in multi-level processes, the capacitance can be reduced by increasing the oxide thickness between spirals. For example, in a five-metal process, 50 to 70% reductions in port-to-port capacitance can be achieved by implementing the spirals on layers five and three instead of five and four. The increased vertical separation will reduce k by less than 5%. One can also trade off reduced coupling for reduced capacitance by displacing the centers of the stacked inductors (Figures 11.21 and 11.22)
Analytical Transformer Models
Figures 11.23 and 11.24 present the circuit models for tapped and stacked transformers, respectively. The corresponding element values for the tapped transformer model are given by the following equations (subscript o refers to the outer spiral, i to the inner spiral, and T to the whole spiral):
where r is the DC metal resistivity; d is the skin depth; tox,t–b is the oxide thickness from top level metal to bottom metal; n is the number of turns; OD, AD, and ID are the outer, average, and inner diameters, respectively; l is the length of the spiral; w is the turn width; t is the metal thickness; and A is the area.
Expressions for the stacked transformer model are as follows (subscript t refers to the top spiral and
b to the bottom spiral):
where toxt is the oxide thickness from top metal to the substrate; toxb is the oxide thickness from bottom metal to substrate; k is the coupling coefficient; Aov is the overlap area of the two spirals; and ds is the center-to-center spiral distance.
The expressions for the series resistances (Rso, Rsi, Rst, and Rsb), the port-substrate capacitances (Coxo, Coxi, Coxt, Coxb, and Coxm ) and the crossover capacitances (Covo, Covi, and Cov) are taken from Ref. 8. Note that the model accounts for the increase in series resistance with frequency due to skin effect. Patterned ground shields (PGS) are placed beneath the transformers to isolate them from resistive and capacitive coupling to the substrate [23]. As a result, the substrate parasitics can be neglected.
The inductance expressions in the foregoing are based on the modified Wheeler formula discussed earlier [24]. This formula does not take into account the variation in inductance due to conductor thickness and frequency. However, in practical inductor and transformer realizations, the thickness is small compared to the lateral dimensions of the coil and has only a small impact on the inductance. For typical conductor thickness variations (0.5 to 2.0 mm), the change in inductance is within a few percent for practical inductor geometries. The inductance also changes with frequency due to changes in current distribution within the conductor. However, over the useful frequency range of a spiral, this variation is negligible [23]. When compared to field solver simulations, the inductance expression exhibits a maxi- mum error of 8% over a broad design space (outer diameter OD varying from 100 to 480 mm, L varying from 0.5 to 100 nH, w varying from 2 mm to 0.3OD, s varying from 2 mm to w, and inner diameter ID varying from 0.2 to 0.8OD).
For the tapped transformer, the mutual inductance is determined by first calculating the inductance of the whole spiral (LT), the inductance of the outer spiral (Lo), the inductance of the inner spiral (Li), and then using the expression M = (LT - Lo - Li)/2. For the stacked transformer, the spirals have identical lateral geometries and therefore identical inductances. In this case, the mutual inductance is determined by first calculating the inductance of one spiral (LT), the coupling coefficient (k) and then using the expression M = kLT . In this last case the coupling coefficient is given by k = 0.9 - ds/(AD) for ds < 0.7AD, where ds is the center-to-center spiral distance and AD is the average diameter of the spirals. As ds increases beyond 0.7AD, the mutual coupling coefficient becomes harder to model. Eventually, k crosses zero and reaches a minimum value of approximately –0.1 at ds = AD. As ds increases further, k asymptotically approaches zero. At ds = 2AD, k = -0.02, indicating that the magnetic coupling between closely spaced spirals is negligible.
The self-inductances, series resistances, and mutual inductances are independent of whether a trans- former is used as a three- or four-terminal device. The only elements that require recomputation are the port-to-port and port-to-substrate capacitances. This situation is analogous to that of a spiral inductor being used as a single- or dual-terminal device.
As with the inductance formulas, the transformer models obviate the need for full field solutions in all but very rare instances, allowing rapid design and optimization.
Comments
Post a Comment